If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13b^2-8b-15=0
a = 13; b = -8; c = -15;
Δ = b2-4ac
Δ = -82-4·13·(-15)
Δ = 844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{844}=\sqrt{4*211}=\sqrt{4}*\sqrt{211}=2\sqrt{211}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{211}}{2*13}=\frac{8-2\sqrt{211}}{26} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{211}}{2*13}=\frac{8+2\sqrt{211}}{26} $
| 25+l=92 | | 5x+22=25x+8 | | 1/3-2n-1/4=7/12 | | 5x/7+½=3x/7-¾ | | 9x+15-4x+5=-15 | | 2x+3=21-4x | | -14.94-12.3u=-15.54-12.4u | | 2y+4=65 | | 5x/7+1/2=3x/7-3/4 | | 7x+65=3x-5 | | 6(3x-2)=-2(x+1) | | x=-8.3=1.3 | | 9+2/3=2q-11/7 | | -8.1+x=13.2 | | u=-7 | | u-3+3=-10+3 | | )11x-2)+(19x+3)+(9x+1)=180 | | 2.7+x=29.9 | | 8=4(7p-5) | | -2x=-24-8x | | 2(x+1)+4=3x+2+x | | -3.5x=28 | | 2x-49+46+2x-25+x-42=360 | | 3+(8×n)=-29 | | -u-4u+-4u-5u=-20 | | -157=5x+7(4x+20) | | 2x−9.6=–0.44 | | 35h+25=440 | | 2m+6=6m–10 | | X/2=2x+4/9+2 | | -66=r-(-74 | | x+7+5x=144 |